

Co-financed by Greece and the European Union

ECOTECH – NCSR Demokritos

NAMED 2nd Meeting

- For the development of the pilot unit we have two engineering designs, namely:
- (I) a design based on the preliminary design presented in the submitted proposal, which requires the development of <u>four</u> <u>membranes</u> (NF high Mg²⁺ rejection, NF high Na⁺ rejection, FO and MD modules, all of them up scaled to <u>0.5 m³/day</u>.
- (ii) a design based on the preliminary design presented in the submitted proposal, which requires the development of only three membranes (NF high Mg²⁺ rejection, NF high Na⁺ rejection and FO, up scaled to 0.5 m3/day (there is no need for MD development).

- develop to TRL 6 of "next-generation" membranes.
- Forward Osmosis (FO) membranes based on recent advances of nanotechnology, namely:
- (a1) PIM/SWCNT (German side?) and
- (a2) development of high flux single wall carbon nanotube (SWCNT) FO hollow fibre membranes by partner(Greek side).
- Development to TRL 6 of "next-generation" nanofiltration hollow fibre, NF_{Mg} high Mg²⁺ rejection (Greek side).

 Development to TRL 6 of "next-generation" high flux membrane distillation (MD) membranes:

• (d1) PIM? (German side?)

• (d2) dual layer hollow fibre hollow fibre membranes hollow fiber membranes by partners(Greek side).

• Upscale the best membranes to 0.5 m³/day.

We need modules of the order of 0.5 m³/day.

 Design, development, operation and optimization of innovative combinations of the best NF₁/NF₂/FO/MD.

• ECOTECH has upgraded the design, we have two designs, one NF₁/NF₂/FO/MD and a second NF₁/NF₂/FO, reducing the number of the membranes that need to be developed down to three.

Feasibility study for the selected pilot unit

<u>hollow fiber</u> <u>MEMBRANE DISTILLATION carbon membranes</u>

- 1. Πολυμερές Διαλύτης
- 2. Μη Διαλύτης
- 3. Spinneret
- 4. Air Gap
- 5. Λουτρό Θρόμβωσης
- 6-7. Τύμπανα Μεταφοράς Συλλογής
- 8. Πολυμερική Κοίλη Ίνα

Φωτογραφία SEM

Module Κοίλων Ινών για Διαχωρισμό Αερίων

SEM PICTURES OF PRODUCED HOLLOW FIBER MEMBRANES

CROSS SECTION

CROSS SECTION

CROSS SECTION

CROSS SECTION

CROSS SECTION

INNERT

MD up scaled module to 0.5 M³/day MD

1. MD (Membrane distillation) Carbon hollow fiber fragile, not readily scalable

• 2. A better alternative is the readily scalable double layer PVDF/PEI (hydrophobic/hydrophilic) hollow fiber membrane

Membrane Fabrication – Hollow Fiber and Flat

Goal: To fabricate flat and hollow fiber membranes for a MD, FO and NF application.

Dry-wet hollow fiber spinning set-up

Membrane Fabrication – For MD application

Goal: PVDF/PEI (hydrophobic/hydrophilic) dual hollow fiber membrane with alumina nanoparticles.

Membrane Fabrication – For FO and NF application

Goal: PES polyelectrolyte layering hollow fiber membrane with GA cross-linking, this creates a positive charge on the inner surface of the membrane that increases the rejection of salts.

Direct Contact Membrane Distillation - DCMD

Commercial Membranes tested in the MD cyctom

wid system					
	M1B	M2B	M3L	M4L	M5L
Company	Filtres- Fiorini	Merck	Millipore	Filtres- Fiorini	Whatman
Туре	Flat	Flat	Flat	Flat	Flat
Material	PTFE	PVDF	GTTP	NYLON	NYLON
Diameter	4 7	4 -	47	47	4 7

47

47

[mm]

[µm]

Pore size

0,22 0,22 0,22 0,2 0,2 **Hydrophobicity** Hydrophobic Hydrophobic Hydrophilic Hydrophilic Hydrophilic

47

NAMED project – Geesthacht, Germany – 17.12.2018

47

47

Characterization of Membranes

Water Contact Angle – WCA

<u>Liquid Entry Pressure – LEP</u>

Results from MD testing

Hydrophobic membranes proved too hydrophobic, no vapour was observed to pass through pores.

Hydrophilic membranes are not suitable for MD, the system resembles a FO operation.

Next plan 1: Membrane modification of surface to decrease hydrophobicity.

Next plan 2: Membrane modification of surface to increase hydrophobicity.

Membrane Modification - Method

Goal: To reduce hydrophobicity of hydrophobic membrane surface.

Step 1:

PTFE flat membranes were immersed for 24 hrs in various PVA solutions: 1 wt%, 0,5 wt% and 0,1 wt%.

Step 2:

Momentarily dipped in ethanol (bad solvent for PVA).

Step 3:

Immersed in GA (glutaraldehyde) solution for cross-linking of PVA for 24 hrs.

Step 4:

Washed with distilled water and dried.

Step 5:

Immersed in distilled water at high temperature (~65°C) for 24 hrs.

Step 6:

Stored dry at room temperature.

Results from PVA modification

The membrane modified with PVA 0,1% had a decreased contact angle and LEP but remained hydrophobic.

While, the membranes modified with PVA 1% and PVA 0,5% became hydrophilic.

Next step: To coat membranes with PVA solutions of 2% and 0,05% and test the modified membranes' performance in the MD system.

PIM-1

HO
$$OH_2$$
 F OH_2 F OH_2 F OH_2 OH_2

PERVAPORATION OR NANOFILTRATION OR FO?

PIM1-GO up scalable PVDF hollow fiber FO membranes

CNT-PEI-TMC hollow fiber FO membrane

CNT-PEI-TMC hollow fiber FO membrane

Pilot Unit Schematic

Co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call "title NAMED (project code: $T2\Delta\Gamma E$ -0597)